(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
r(xs, ys, zs, nil) → xs
r(xs, nil, zs, cons(w, ws)) → r(xs, xs, cons(succ(zero), zs), ws)
r(xs, cons(y, ys), nil, cons(w, ws)) → r(xs, xs, cons(succ(zero), nil), ws)
r(xs, cons(y, ys), cons(z, zs), cons(w, ws)) → r(ys, cons(y, ys), zs, cons(succ(zero), cons(w, ws)))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
r(nil, nil, zs, cons(w, cons(w63_0, ws64_0))) →+ r(nil, nil, cons(succ(zero), cons(succ(zero), zs)), ws64_0)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [ws64_0 / cons(w, cons(w63_0, ws64_0))].
The result substitution is [zs / cons(succ(zero), cons(succ(zero), zs))].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
r(xs, ys, zs, nil) → xs
r(xs, nil, zs, cons(w, ws)) → r(xs, xs, cons(succ(zero), zs), ws)
r(xs, cons(y, ys), nil, cons(w, ws)) → r(xs, xs, cons(succ(zero), nil), ws)
r(xs, cons(y, ys), cons(z, zs), cons(w, ws)) → r(ys, cons(y, ys), zs, cons(succ(zero), cons(w, ws)))
S is empty.
Rewrite Strategy: FULL
(5) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
cons/0
succ/0
(6) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
r(xs, ys, zs, nil) → xs
r(xs, nil, zs, cons(ws)) → r(xs, xs, cons(zs), ws)
r(xs, cons(ys), nil, cons(ws)) → r(xs, xs, cons(nil), ws)
r(xs, cons(ys), cons(zs), cons(ws)) → r(ys, cons(ys), zs, cons(cons(ws)))
S is empty.
Rewrite Strategy: FULL
(7) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(8) Obligation:
TRS:
Rules:
r(xs, ys, zs, nil) → xs
r(xs, nil, zs, cons(ws)) → r(xs, xs, cons(zs), ws)
r(xs, cons(ys), nil, cons(ws)) → r(xs, xs, cons(nil), ws)
r(xs, cons(ys), cons(zs), cons(ws)) → r(ys, cons(ys), zs, cons(cons(ws)))
Types:
r :: nil:cons → nil:cons → nil:cons → nil:cons → nil:cons
nil :: nil:cons
cons :: nil:cons → nil:cons
hole_nil:cons1_0 :: nil:cons
gen_nil:cons2_0 :: Nat → nil:cons
(9) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
r
(10) Obligation:
TRS:
Rules:
r(
xs,
ys,
zs,
nil) →
xsr(
xs,
nil,
zs,
cons(
ws)) →
r(
xs,
xs,
cons(
zs),
ws)
r(
xs,
cons(
ys),
nil,
cons(
ws)) →
r(
xs,
xs,
cons(
nil),
ws)
r(
xs,
cons(
ys),
cons(
zs),
cons(
ws)) →
r(
ys,
cons(
ys),
zs,
cons(
cons(
ws)))
Types:
r :: nil:cons → nil:cons → nil:cons → nil:cons → nil:cons
nil :: nil:cons
cons :: nil:cons → nil:cons
hole_nil:cons1_0 :: nil:cons
gen_nil:cons2_0 :: Nat → nil:cons
Generator Equations:
gen_nil:cons2_0(0) ⇔ nil
gen_nil:cons2_0(+(x, 1)) ⇔ cons(gen_nil:cons2_0(x))
The following defined symbols remain to be analysed:
r
(11) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
r(
gen_nil:cons2_0(
0),
gen_nil:cons2_0(
0),
gen_nil:cons2_0(
c),
gen_nil:cons2_0(
n4_0)) →
gen_nil:cons2_0(
0), rt ∈ Ω(1 + n4
0)
Induction Base:
r(gen_nil:cons2_0(0), gen_nil:cons2_0(0), gen_nil:cons2_0(c), gen_nil:cons2_0(0)) →RΩ(1)
gen_nil:cons2_0(0)
Induction Step:
r(gen_nil:cons2_0(0), gen_nil:cons2_0(0), gen_nil:cons2_0(c), gen_nil:cons2_0(+(n4_0, 1))) →RΩ(1)
r(gen_nil:cons2_0(0), gen_nil:cons2_0(0), cons(gen_nil:cons2_0(c)), gen_nil:cons2_0(n4_0)) →IH
gen_nil:cons2_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(12) Complex Obligation (BEST)
(13) Obligation:
TRS:
Rules:
r(
xs,
ys,
zs,
nil) →
xsr(
xs,
nil,
zs,
cons(
ws)) →
r(
xs,
xs,
cons(
zs),
ws)
r(
xs,
cons(
ys),
nil,
cons(
ws)) →
r(
xs,
xs,
cons(
nil),
ws)
r(
xs,
cons(
ys),
cons(
zs),
cons(
ws)) →
r(
ys,
cons(
ys),
zs,
cons(
cons(
ws)))
Types:
r :: nil:cons → nil:cons → nil:cons → nil:cons → nil:cons
nil :: nil:cons
cons :: nil:cons → nil:cons
hole_nil:cons1_0 :: nil:cons
gen_nil:cons2_0 :: Nat → nil:cons
Lemmas:
r(gen_nil:cons2_0(0), gen_nil:cons2_0(0), gen_nil:cons2_0(c), gen_nil:cons2_0(n4_0)) → gen_nil:cons2_0(0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_nil:cons2_0(0) ⇔ nil
gen_nil:cons2_0(+(x, 1)) ⇔ cons(gen_nil:cons2_0(x))
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
r(gen_nil:cons2_0(0), gen_nil:cons2_0(0), gen_nil:cons2_0(c), gen_nil:cons2_0(n4_0)) → gen_nil:cons2_0(0), rt ∈ Ω(1 + n40)
(15) BOUNDS(n^1, INF)
(16) Obligation:
TRS:
Rules:
r(
xs,
ys,
zs,
nil) →
xsr(
xs,
nil,
zs,
cons(
ws)) →
r(
xs,
xs,
cons(
zs),
ws)
r(
xs,
cons(
ys),
nil,
cons(
ws)) →
r(
xs,
xs,
cons(
nil),
ws)
r(
xs,
cons(
ys),
cons(
zs),
cons(
ws)) →
r(
ys,
cons(
ys),
zs,
cons(
cons(
ws)))
Types:
r :: nil:cons → nil:cons → nil:cons → nil:cons → nil:cons
nil :: nil:cons
cons :: nil:cons → nil:cons
hole_nil:cons1_0 :: nil:cons
gen_nil:cons2_0 :: Nat → nil:cons
Lemmas:
r(gen_nil:cons2_0(0), gen_nil:cons2_0(0), gen_nil:cons2_0(c), gen_nil:cons2_0(n4_0)) → gen_nil:cons2_0(0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_nil:cons2_0(0) ⇔ nil
gen_nil:cons2_0(+(x, 1)) ⇔ cons(gen_nil:cons2_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
r(gen_nil:cons2_0(0), gen_nil:cons2_0(0), gen_nil:cons2_0(c), gen_nil:cons2_0(n4_0)) → gen_nil:cons2_0(0), rt ∈ Ω(1 + n40)
(18) BOUNDS(n^1, INF)